### BEDNETS TO PREVENT MALARIA: META-ANALYSIS OF INDIAN TRIALS CONFIRMING

# **RESULTS OF A COCHRANE SYSTEMATIC REVIEW**



#### HANS VAN REMOORTEL<sup>1</sup>, EMMY DE BUCK<sup>1</sup>, PHILIPPE VANDEKERCKHOVE<sup>1,2</sup>, SATYA PAUL AGARWAL<sup>3</sup>

<sup>1</sup>BELGIAN RED CROSS-FLANDERS, MECHELEN, BELGIUM <sup>2</sup>DEPARTMENT OF PUBLIC HEALTH AND PRIMARY CARE, CATHOLIC UNIVERSITY OF LEUVEN, LEUVEN, BELGIUM <sup>3</sup>INDIAN RED CROSS SOCIETY, NEW DELHI, INDIA

### **INTRODUCTION & OBJECTIVES**

New malaria cases in India are estimated at 24 million per year by the World Health Organization, resulting in a high socio-economic burden<sup>1</sup>. A Cochrane systematic review, based on randomized controlled trials in non-Indian countries, showed that insecticide treated bednets are highly effective in reducing morbidity from malaria<sup>2</sup>. As part of the development of evidencebased Indian first aid and prevention guidelines, a cooperation between Belgian Red Cross-Flanders and the Indian Red Cross Society, we aimed to investigate the effectiveness of both insecticide-treated and untreated bednets on malaria in Indian families.

#### METHODS

A systematic literature review was performed in Medline, Embase and Central.
An Indian seach filter was developed (including all Indian States) to search for Indian studies. ried out and blood smears of



- Inclusion and exclusion criteria:
  - Population: studies done in India with lay people, community health workers.
  - Intervention: studies on the effectiveness of (un)treated bednets. The minimum target impregnation dose of the treated bed nets was 200 mg/m2 permethrin or etofenprox, 30 mg/m2 cyfluthrin, 20 mg/m2 alphacypermethrin or 10 mg/m2 deltamethrin/lambdacyhalothrin.
  - Comparison: no bednets.
  - Malaria outcomes: parasite prevalence (=number of malaria cases (positive blood slide for any parasite) divided by the population under surveillance) was assessed after a door-to-door fortnightly surveillance was car-
- all fever cases were collected (finger prick method, Figure 1).
- Design: observational or experimental studies.
- Language/time window: no restriction.
- The overall effect of using (un) treated bed nets compared to no bednets on malaria (parasite prevalence) was investigated

*Figure 1. Active malaria detection via the finger prick method.* 

by grouping all studies in a meta-analysis (random-effects model) and calculating the pooled risk ratios (RR).

#### RESULTS

- Box 1 represents the study selection flowchart. Fourteen from the 16 included trials were selected for the meta-analysis (due to availability of data on malaria cases)
- Studies were divided into subgroups according to the Annual Parasite Incidence (API); low endemic area (API<2) versus high endemic area (API≥2) (Figure 2).
- Meta-analysis showed that untreated bednets reduced the risk of malaria by 58% in low endemic areas (pooled RR 0.42 [95% CI; 0.30,0.60]) and by 39% in high endemic areas (pooled RR 0.61 [95% CI; 0.57,0.65]). When using treated bednets, the risk of malaria was further reduced; by 82% (pooled RR 0.18 [95% CI; 0.08,0.42]) and by 65% (pooled R 0.35 [95% CI; 0.26,0.47] in low and high endemic areas, respectively (Box 2).



Low endemic area (API<2) 1. Ansari 2002<sup>3</sup> 2. Sreehari 2007<sup>4</sup> 3. Mittal 2012<sup>5</sup> 4. Ansari 2003<sup>6</sup>

High endemic area (API≥2)
5. Dev 2011<sup>7</sup>
6. Bhatia 2004<sup>8</sup>
7. Das 1993<sup>9</sup>

• The Cochrane Systematic Review (randomized non-Indian trials, 2004) showed that treated bednets had a protective impact on malaria (average RR 0.87 for stable malaria areas compared to no bednet use).

## **Box 1: Study selection flowchart for preventive bednet intervention for malaria, identified in Indian studies**

(B: level of evidence moderate according to GRADE)

 

 Records identified through database searching (n=479) Detailed search strategy in Medline, Embase and Central.

 Removing duplicates/triplicates (n=86)

 Title and abstract screening (n=393)

 Records excluded (n=365)

 Full-text articles assessed for eligibility (n=28)

 Full-text articles excluded (n=12)

 Outcome (n=6)

 8. Sahu 2003<sup>10</sup>
 9. Sahu 2008<sup>11</sup>
 10. Bhatt 2012<sup>12</sup>
 11. Sharma 2006<sup>13</sup>
 12. Sharma 2009<sup>14</sup>
 13. Yadav 1998<sup>15</sup>
 14. Yadav 2001<sup>16</sup>

Figure 2. Classification of the included studies into low endemic versus high endemic area, based on the Annual Parasite Incidence.

### Box 2: Meta-analysis with calculation of the pooled effect of treated bed nets on parasite prevalence

|                                   | Treated bed nets             |            | No bed nets  |           | Risk Ratio |                     | Risk Ratio          |  |
|-----------------------------------|------------------------------|------------|--------------|-----------|------------|---------------------|---------------------|--|
| Study or Subgroup                 | Events                       | Total      | Events       | Total     | Weight     | M-H, Random, 95% Cl | M-H, Random, 95% Cl |  |
| 2.2.1 low endemic a               | rea                          |            |              |           |            |                     |                     |  |
| Ansari 2003                       | 2                            | 802        | 9            | 510       | 2.6%       | 0.14 (0.03, 0.65)   | ←                   |  |
| Ansari 2002                       | 3                            | 1350       | 11           | 1410      | 3.3%       | 0.28 [0.08, 1.02]   |                     |  |
| Sreehari 2007                     | 3                            | 2000       | 67           | 2000      | 3.8%       | 0.04 [0.01, 0.14]   | <b>←</b>            |  |
| Mittal 2012<br>Subtotal (95% CI)  | 6                            | 1381       | 18           | 1337      | 4.9%       | 0.32 [0.13, 0.81]   |                     |  |
| Total events                      | 14                           | 2222       | 105          | 5257      | 14.0%      | 0.10 [0.00, 0.44]   |                     |  |
| Heterogeneity: Tau <sup>a</sup> = | = 0.69; Chi <sup>2</sup> = 8 | 8.67, df = | : 3 (P = 0.0 | 03); l² = | 65%        |                     |                     |  |
| Test for overall effect           | : Z = 3.55 (P =              | 0.0004)    |              |           |            |                     |                     |  |
| 2.2.2 high endemic a              | rea                          |            |              |           |            |                     |                     |  |
| Dev 2011                          | 4                            | 2100       | 76           | 2078      | 4.5%       | 0.05 (0.02, 0.14)   | <b>←</b>            |  |
| Sharma 2009                       | 16                           | 1953       | 50           | 1863      | 7.3%       | 0.31 [0.17, 0.53]   | <b>—</b>            |  |
| Sharma 2006                       | 36                           | 506        | 49           | 367       | 8.4%       | 0.53 (0.35, 0.80)   | <b>—</b> —          |  |
| Sahu 2003                         | 29                           | 489        | 82           | 501       | 8.4%       | 0.36 [0.24, 0.54]   | <b>—</b> —          |  |
| Sahu 2008                         | 27                           | 497        | 156          | 590       | 8.5%       | 0.21 [0.14, 0.30]   | <b>—</b>            |  |
| Das 1993                          | 36                           | 368        | 166          | 797       | 8.9%       | 0.47 [0.33, 0.66]   | <b>—</b> —          |  |
| Bhatt 2012                        | 87                           | 5316       | 171          | 3865      | 9.4%       | 0.37 [0.29, 0.48]   | - <b>-</b> -        |  |
| Yadav 1998                        | 191                          | 1134       | 438          | 626       | 9.9%       | 0.24 [0.21, 0.28]   | +                   |  |





#### CONCLUSIONS

• There is evidence from 16 experimental Indian studies that using (insecticide treated) bednets is an effective intervention to prevent malaria, which is in line with the findings of the Cochrane systematic review, performed outside India.



 The present findings support the current bednet use in the National Vector Borne Disease Control Programme in India<sup>17</sup> and will be included in the Indian first aid and preventive guidelines.

**References**: <sup>1</sup> World Malaria Report 2012 by the World Health Organisation; <sup>2</sup> Lengeler C. Cochrane Database of Systematic Reviews 2004; <sup>3</sup> Ansari et al. Indian J Malariol 2002; <sup>4</sup> Sreehari et al. J Vector Borne Dis 2007; <sup>5</sup> Mittal et al. J Vector Borne Dis 2012; <sup>6</sup> Ansari et al. J Vector Borne Dis 2003; <sup>7</sup> Dev et al. Acta Trop 2011; <sup>8</sup> Bhatia et al. Soc Sci Med 2004; <sup>9</sup> Das et al. Southeast Asian J Trop Med Public Health 1993; <sup>10</sup> Sahu et al. Acta Trop 2003; <sup>11</sup> Sahu et al. Indian J Med Res 2008; <sup>12</sup> Bhatt et al. Malar J 2012; <sup>13</sup> Sharma et al. J Am Mosq Control Assoc 2006; <sup>14</sup> Sharma et al. Acta Trop 2009; <sup>15</sup> Yadav et al. J Am Mosq Control Assoc 1998; <sup>16</sup> Yadav et al. J Med Entomol 2001; <sup>17</sup> http://www.nhp.gov.in.

**Budget and funding**: The development of evidence-based Indian first aid and prevention guidelines was financed by Belgian Red Cross-Flanders with co-funding from the Belgian Directorate-General for Development Cooperation (DGD)