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Abstract

Background

Mass gathering manifestations attended by large crowds are an increasingly common fea-

ture of society. In parallel, an increased number of studies have been conducted that devel-

oped and/or validated a model to predict medical usage rates at these manifestations.

Aims

To conduct a systematic review to screen, analyse and critically appraise those studies that

developed or validated a multivariable statistical model to predict medical usage rates at

mass gatherings. To identify those biomedical, psychosocial and environmental predictors

that are associated with increased medical usage rates and to summarise the predictive per-

formance of the models.

Method

We searched for relevant prediction modelling studies in six databases. The predictors from

multivariable regression models were listed for each medical usage rate outcome (i.e.

patient presentation rate (PPR), transfer to hospital rate (TTHR) and the incidence of new

injuries). The GRADE methodology (Grades of Recommendation, Assessment, Develop-

ment and Evaluation) was used to assess the certainty of evidence.

Results

We identified 7,036 references and finally included 16 prediction models which were devel-

oped (n = 13) or validated (n = 3) in the USA (n = 8), Australia (n = 4), Japan (n = 1), Singa-

pore (n = 1), South Africa (n = 1) and The Netherlands (n = 1), with a combined audience of

>48 million people in >1700 mass gatherings. Variables to predict medical usage rates were

biomedical (i.e. age, gender, level of competition, training characteristics and type of injury)

and environmental predictors (i.e. crowd size, accommodation, weather, free water
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availability, time of the manifestation and type of the manifestation) (low-certainty evidence).

Evidence from 3 studies indicated that using Arbon’s or Zeitz’ model in other contexts signifi-

cantly over- or underestimated medical usage rates (from 22% overestimation to 81%

underestimation).

Conclusions

This systematic review identified multivariable models with biomedical and environmental

predictors for medical usage rates at mass gatherings. Since the overall certainty of the evi-

dence is low and the predictive performance is generally poor, proper development and vali-

dation of a context-specific model is recommended.

Introduction

A mass gathering has been defined by the World Health Organization (WHO) as an occasion,

either organized or spontaneous, where the number of people attending is sufficient to strain

the planning and response resources of the community, city, or nation hosting the manifesta-

tion [1].

Since mass gatherings attended by large crowds have become a more frequent feature of

society, mass gathering medicine was highlighted as a new discipline at the World Health

Assembly of Ministers of Health in Geneva in May 2014 [2]. As a consequence, the amount of

international initiatives and meetings on mass gathering medicine has increased over the past

decade as has the number of experts and the amount of publications on pre-event planning

and surveillance for mass gathering. Mass gatherings are associated with increased health risks

and hazards such as the transmission of communicable diseases, exacerbation of non-commu-

nicable diseases and comorbidities (e.g. diabetes, hypertension, COPD, cardiovascular events)

and an impact on mental or physical health and psychosocial disorders [3]. Furthermore, the

mental health consequences of traumatic incidents at mass gatherings can be prolonged with

stress to people, families, and communities resulting in short-term fear of death as well as gen-

eral distress, anxiety, excessive alcohol consumption, and other psychiatric disorders. If mass

gatherings are improperly managed, this can lead to human, material, economic or environ-

mental losses and impacts [4]. Therefore, the development of (cost-)effective methods for the

planning and handling of the health risks associated with mass gatherings will strengthen

global health security, prevent excessive emergency health problems and associated economic

loss, and mitigate potential societal disruption in host and home communities [5].

To have a better understanding of the health effects of mass gatherings, a conceptual model

for mass gathering health care was published in 2004 by Paul Arbon [6]. This model divided

the key characteristics of mass gathering manifestations into three interrelated domains that

may have an impact on the Patient Presentation Rate (PPR), the Transport To Hospital Rate

(TTHR) and the level and extent of healthcare services: 1) the biomedical domain (i.e. biomed-

ical influences such as demographic characteristics of the audience), 2) the psychosocial

domain (i.e. psychological and social influences within mass gatherings including individual

and crowd behaviour) and 3) the environmental domain (i.e. environmental features of a mass

gathering including terrain and climatological conditions). Although most scientific papers on

mass gathering are descriptive, i.e. without proper statistical analysis to predict medical usage

rates, recently more prediction modelling studies have been developed and/or validated to

have a better understanding of the patient care required at such manifestations. In order to
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formulate evidence-based, robust and effective interventions in the planning and management

of mass gatherings, the scientific underpinning of Arbon’s conceptual model by a systematic

screening, analysis and critical appraisal of prediction modelling studies for medical usage

rates at mass gatherings was needed.

This systematic review aimed to identify multivariable prediction models for medical usage

rates at mass gatherings, to summarize evidence for individual biomedical, psychosocial and

environmental predictors at mass gatherings, and to summarise the predictive performance of

these models.

Material and methods

Protocol and registration

We carried out a systematic literature review according to a predefined protocol, which was

not registered beforehand [7]. We planned and reported the systematic review in accordance

with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA

checklist, S1 File) [8].

Eligibility criteria

Studies were eligible for inclusion if they answered the following PICO (Population, Interven-

tion, Comparison, Outcome) question: “Which predictive models (I) are available for emer-

gency services planning (O) during mass gathering manifestations (P)?” Full texts of potentially

relevant articles were reviewed according to the following inclusion and exclusion criteria:

• Population: studies performed on all types of mass gatherings were included, such as sport

(spectator) manifestations, (indoor/outdoor) music concerts and/or festivals. A mass gath-

ering has been defined by the World Health Organization (WHO) as an occasion, either

organized or spontaneous, where the number of people attending is sufficient to strain the

planning and response resources of the community, city, or nation hosting the manifesta-

tion [1].

• Intervention/Predictors: we included studies that described a multivariable statistical model

and extracted data of the predictors. Multivariable models represent a more realistic picture,

rather than looking at a single variable (univariate associations) and they provide a powerful

test of significance compared to univariate techniques. We included studies that had the

intention to evaluate more than one predictor variable in a multivariable model, regardless

of how many predictor variables remained in the final model. Evacuation models, opinion-

based or theory-based models, and statistical models based on univariate (correlation) analy-

sis were excluded.

• Outcome: we included medical usage rates such as Patient Presentation Rate (PPR), the

Transport To Hospital Rate (TTHR) or the incidence of new injuries.

• Study design: prediction model development studies without external validation, prediction

model development studies with external application in few independent mass gatherings or

validation on an extensive list of independent mass gatherings (i.e. big data analysis), exter-

nal model validation studies or studies that applied observations from few mass gatherings

to another prediction model, were included according to the Checklist for critical Appraisal

and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) [9].

• Language: no language restrictions were applied.
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Data sources and searches

Eligible studies were identified by searching the following databases: MEDLINE (via the

PubMed interface), Embase (via Embase.com), the Cochrane Library, CINAHL, Web of Sci-

ence and Scopus from the time of inception of the database until 14 May 2019. We developed

search strategies for each database using index terms and free text terms (S2 File). Search yields

were exported to a citation program (EndNote X7.5) and duplicates were discarded.

Study selection

Two reviewers (HVR and HS) independently screened the titles and abstracts of all references

yielded by the search. Subsequently, the full text of each article that potentially met the eligibil-

ity criteria was obtained, and after a full-text assessment, studies that did not meet the selection

criteria were excluded. Any discrepancies between reviewers were resolved by consensus or by

consulting a third reviewer (EDB). For each included study, the reference lists and first 20

related citations in PubMed were screened for additional relevant records.

Data extraction

Data concerning study design (type of prediction modelling study), study aims and hypothesis,

population characteristics (participation eligibility and recruitment method; participation

description; details of mass gathering manifestations; study dates), candidate predictors

(dichotomous/categorical/continuous variables), outcome measures (medical usage rates),

effect sizes, statistical model, and study quality were extracted independently by the two

reviewers.

Risk of bias assessment

The PROBAST (Prediction model Risk Of Bias ASsessment Tool) checklist items were used to

assess the risk of bias and concerns for applicability for each study [10]. These items include 20

signalling questions across 4 domains: participants, predictors, outcome and analysis. Signal-

ling questions were answered as ‘yes’, ‘probably yes’, ‘no’, ‘probably no’ or ‘no information’

and risk of bias was assessed for each domain. A domain where all signalling questions were

answered as (probably) yes was judged as ‘low risk of bias’. An answer of (probably) no on 1 or

more questions indicated the potential for bias, whereas no information indicated insufficient

information. The risk of bias assessment was performed by the two reviewers independently.

Data synthesis

Individual predictors for medical usage rates. The predictors (both the statistically sig-

nificant (p<0.05) and statistically non-significant ones) from multivariable statistical models

were pooled into different categories for each type of mass gathering manifestation (music

concert, spectator sport manifestation, sport manifestation, mixed manifestation (sport,

music, public exhibition)) corresponding to the three main domains for mass gathering health

according to Arbon’s conceptual model: biomedical domain, psychosocial domain, environ-

mental domain [6]. The direction of the association between the candidate predictors and the

outcome variables was expressed as positive (e.g. night manifestations are associated with

higher patient presentation rates compared to day manifestations) or negative (e.g. free water

availability is associated with lower patient presentation rates).

Predictive performance of the models. Predictive accuracy measures of the models, such

as the R2 or the mean/median error, were extracted and summarized. The R2 is the square of

the correlation and measures the proportion of variation in the dependent variable (i.e.
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medical usage rates) that can be attributed to the independent variable (i.e. predictor vari-

ables). The R2 indicates how well the regression model fits the observed data, ranging from 0%

(no fit) to 100% (perfect fit). The predictive performance is considered as very weak (R2 of

0–4%), weak (R2 of 4 to 16%), moderate (R2 of 16 to 36%), strong (R2 of 36 to 64%) or very

strong (R2 of 64% to 100%) [11].

Information on type of mass gathering, outcomes measured and the model that was vali-

dated with the data collected (i.e. the reference model), was summarized. Results were reported

as a % underestimation or % overestimation (compared to the reference model).

Grading of the evidence

The GRADE approach (Grading of Recommendations, Assessment, Development and Evalua-

tion) was used to assess the certainty of the evidence (also known as quality of evidence or con-

fidence in effect estimates) [12]. Since no meta-analyses were possible, we used the GRADE

guidelines for rating the certainty in evidence in the absence of a single estimate of effect [13].

The certainty of the evidence was graded as ‘high’ (further research is very unlikely to change

our confidence in the effect estimate), ‘moderate’ (further research is likely to have an impor-

tant impact on our confidence in the effect estimate), ‘low’ (further research is very likely to

have an important impact on our confidence in the effect estimate and is likely to change the

estimate) or ‘very low’ (any estimate of effect is very uncertain). The initial certainty level of

the included prediction modelling studies was set at ‘high’ because the association between the

predictors and outcomes was considered irrespective of any causal connection. Eight criteria

were considered to further downgrade or upgrade the certainty of the evidence: five criteria

who might potentially downgrade the overall certainty of the evidence (i.e. methodological

limitations of the study, indirectness, imprecision, inconsistency and likelihood of publication

bias) and three criteria who might potentially upgrade the overall certainty of the evidence (i.e.

large effect, dose-response relation in the effect, and opposing plausible residual bias or con-

founding). Methodological limitations of the studies were assessed by considering the overall

risk of bias judgement across studies based on the risk of bias assessment of the 4 PROBAST

domains (i.e. participants, predictors, outcome and analysis). Indirectness was assessed by

making a global judgement on how dissimilar the research evidence is to the PICO question at

hand (in terms of population, interventions and outcomes across studies). The PROBAST tool

was used to identify concerns regarding the applicability of each included study (i.e. when the

populations, predictors or outcomes of the study differ from those specified in the review ques-

tion) and an overall judgement across studies was made. Imprecision was assessed by consid-

ering the optimal information size (or the total number of events for binary outcomes and the

number of participants in continuous outcomes) across all studies. A threshold of 400 or less is

concerning for imprecision [14]. Results may also be imprecise when the 95% confidence

intervals of all studies or of the largest studies include no effect and clinically meaningful bene-

fits or harms. A global judgement on inconsistency was done by evaluating the consistency of

the direction and primarily the difference in the magnitude of association between the predic-

tor variables and the outcomes across studies (since statistical measures of heterogeneity were

not available). Widely differing estimates of the effects indicated inconsistency. Publication

bias was suspected when the body of evidence consisted of only small positive studies or when

studies were reported in trial registries but not published.

A large magnitude of effect (i.e. large association between the predictor variable and out-

come) was considered in case the relative risk or odds ratio is 2–5 or 0.5–0.2 with no plausible

confounders in the majority of studies. Since this review was not focused on drugs or pharma-

ceutical agents, assessing a dose-response gradient was not applicable here. Finally, we only
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included studies that described a multivariable statistical model. Therefore, making a judge-

ment whether all plausible confounders and biases from the prediction modelling studies

unaccounted for in the adjusted/multivariate analyses (i.e. all residual confounders) and may

lead to an underestimated association is not applicable here.

The two reviewers independently rated the certainty of the evidence for each outcome. Any

discrepancies between reviewers were resolved by consensus or by consulting a third reviewer

(EDB).

Results

Study selection

The systematic literature search resulted in a total of 7,036 citations (after removing dupli-

cates), which were screened by two reviewers independently. Fig 1 represents the study selec-

tion flowchart. We included 16 studies that developed (n = 13) or externally applied (n = 3) a

multivariable statistical model to predict medical usage rates in mass gathering manifestations.

No studies were identified that externally validated prediction models against a big data set of

mass gatherings.

Study characteristics

A total amount of>1,700 mass gathering manifestations (median[range]: 2.5[1–405] mass

gatherings per study) attended by>48 million people were included to develop and/or validate

these models. A mix of different types of mass gathering manifestations were included such as

sports (spectator) manifestations (e.g. soccer games, auto races, (half-)marathon, n = 12

(75%)), music concerts (indoor/outdoor, n = 8 (50%)), fete/carnivals (n = 4, 25%), public exhi-

bitions and ceremonial manifestations (n = 3, 19%). The majority of the studies (n = 12, 75%)

were conducted in the USA (n = 8) and Australia (n = 4). The other studies were performed in

Japan (n = 1), Singapore (n = 1), South Africa (n = 1) and The Netherlands (n = 1). Data were

collected in 2 studies between 1980–1995, in 7 studies between 1995–2005, and in 7 studies

between 2005–2015. Patient influx at first aid posts, expressed as total number or rate (per

1,000 or 10,000 attendees), was the outcome of interest in most of the studies (n = 14). Other

outcomes included in the prediction model were the number of transfers to hospital (per 1,000

or 10,000 attendees) (n = 7) or the incidence of new (non-)medical injuries/complications

(n = 3). All studies (except one) investigated whether at least one of the following environmen-

tal candidate predictors were associated with medical usage (rates): 1) weather conditions

(n = 12: average/maximal daily temperature; humidity; heat index; dew point; % sunshine;

wind speed; precipitation; barometric pressure), 2) crowd size (n = 12), 3) type of the manifes-

tation (n = 12), 4) time of the manifestation (n = 7: night vs day; duration; year of the manifes-

tation; season; day of the week), 5) venue accommodation (n = 7: mobile vs seated; indoor vs

outdoor; bounded vs unbounded; focussed vs extended; maximum venue capacity; access to

venue), 6) presence of alcohol (n = 4) or 7) free water availability (n = 1). Five studies included

biomedical candidate predictors into their (univariate) model: 1) demographics (n = 5: age;

gender; BMI), 2) level of competition (n = 3: running experience; running pace category; com-

petitive vs non-competitive), 3) training characteristics (amount of training; type of training)

and 4) injury status (n = 1: injuries incurred in the 12 months prior to the manifestation).

None of the studies included psychosocial candidate predictors (e.g. crowd behaviour, reason

for attendance, length of stay) in the model. Four studies used general linear regression analy-

sis to develop a multivariable prediction model. Other types of generalized linear regression

analysis included Poisson regression analysis (n = 4), logistic regression analysis (n = 3), and

negative binomial regression analysis (n = 2). One study applied non-linear regression analysis
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(Classification And Regression Trees (CART)). Details on the characteristics of the included

studies can be found in Table 1.

Risk of bias assessment

Individual judgements about each PROBAST risk of bias item (i.e. 20 signalling questions

according to 4 domains) can be found in S1 and S2 Figs. PROBAST domains that were most

prone to bias were the methods of analysis used (high risk of bias in 13 studies (81%)) and the

participant recruitment (high risk of bias in 10 studies (62%)).

Factors that predict patient presentation (rate)

Ten multivariable regression models to predict patient presentation (rate) were developed.

The following predictor variables were included in these models: weather conditions (in 8

models), crowd size (in 4 models), type of the manifestation (in 8 models), venue accommoda-

tion (in 4 models), time of the manifestation (in 3 models), free water availability (in 1 model),

Fig 1. Study identification and selection process of the systematic review.

https://doi.org/10.1371/journal.pone.0234977.g001
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Table 1. Characteristics of included studies.

Author, year,

Country

Population—mass gathering manifestations Outcome Candidate predictors Type of

regression

analysis

Prediction model development studies without external validation

Arbon, 2001,

Australia [15]

Number of manifestations: 201 (mix of

manifestations: bounded vs unbounded;

focused vs extended)

PPR (per 1,000 attendees) Environmental (n = 7): crowd size; venue

accommodation (mobile vs seated,

bounded vs unbounded, indoor vs

outdoor); weather conditions (humidity;

temperature); time of the manifestation

(night vs day); type of the manifestation

Linear

Total sample size: 12,046,436 spectators—

11,956 patients

TTHR (per 1,000 attendees)

Grange, 1999,

USA [16]

Number of manifestations: 405 concerts

(Outdoor concerts: Blockbuster Pavilion

(1993–1995) in Devore Hollywood Bowl

(1991–1995) in Hollywood, Los Angeles

Coliseum (1991, 1992) in Los Angeles. Indoor

concerts: Los Angeles Sports Arena (1991–

1994) in Los Angeles, Long Beach Arena

(1991, 1993) in Long Beach)

PPR (per 10,000) Environmental (n = 3): crowd size;

weather conditions (temperature); type of

the manifestation

Poisson

Total sample size: 4.638.099 total attendees–

1,492 total patients (mean PPR = 2.1/10,000)

Locoh-Donou,

2016, USA [17]

Number of manifestations: 79 mass gatherings

(29 athletic manifestations; 11 football games;

23 concerts; 16 public exhibitions)

PPR (per 10,000) Environmental (n = 9): crowd size; venue

accommodation (% occupied seating,

bounded vs unbounded; indoor vs

outdoor); weather conditions (heat index;

air conditioning); free water availability;

type of the manifestation; alcohol presence

Poisson

Total sample size: 839,599 spectators—670

patient presentations (PPR = 7.98/10,000)

Milsten, 2003,

USA [18]

Number of manifestations: 215 mass

gatherings (27 NLF football games; 168 MLB

baseball games; 20 rock concerts)

PPR (per 10,000) Environmental (n = 4): weather

conditions (humidity; temperature; heat

index); type of the manifestation

Poisson

Total sample size: 9,633,462 spectators—5,899

patient encounters (mean PPR 6.1/10,000)

Morimura, 2004,

Japan [19]

Number of manifestations: FIFA World Cup

Soccer Japan 2002 (32 soccer games)

PP (total) Environmental (n = 6): crowd size; venue

accommodation (maximum venue

capacity, access to venue); weather

conditions (humidity, temperature, wind

velocity)

Linear

PPR (per 1,000)

Total sample size: 1,439,052 spectators—1,661

patient presentations (mean PPR 1.21/1,000;

mean TTHR 0.05/1,000)

TTH (total)

TTHR (per 1,000 attendees)

Schwabe, 2014,

South Africa [20]

Number of manifestations: 4 editions of the

Two Oceans half-marathon race in Cape

Town (South Africa) (2008–2011)

New medical complications (general

medical complications; postural

hypotension; musculoskeletal

complications; gastrointestinal

complications)

Biomedical (n = 4): level of competition

(running experience; running pace

category); demographics (age, gender)

Poisson

Total sample size: 39,511 starters (21,028 men

and 18,483 women); incidence medical

complications = 5.14/1,000 runners (95%CI:

4.48–5.90)

Environmental (n = 1): time of the

manifestation (year of race)

Selig, 2013, USA

[21]

Number of manifestations: race events during

6 weekends at Kansas Speedway

PPR (per 10,000) Environmental (n = 6): weather

conditions (humidity, temperature,

barometric pressure, dew point;

precipitation); type of the manifestation

Negative

binomial

Total sample size: not reported—1,305 patient

encounters (mean PPR 13/10,000; mean

TTHR 0.24/10,000)

TTHR (per 10,000)

Tan, 2014,

Singapore [22]

Number of manifestations: 3 editions of the

Army Half-Marathon (Singapore)

PPR (per 10,000) Biomedical (n = 3): level of competition

(competitive vs non-competitive);

demographics (age, gender);

Logistic

Total sample size: 99,163 participants—221

casualties (MUR from 16 to 26 (casualties/

10,000))

Environmental (n = 1): type of the

manifestation

(Continued)

PLOS ONE Prediction modelling studies for medical usage rates in mass gatherings: A systematic review

PLOS ONE | https://doi.org/10.1371/journal.pone.0234977 June 23, 2020 8 / 20

https://doi.org/10.1371/journal.pone.0234977


Table 1. (Continued)

Author, year,

Country

Population—mass gathering manifestations Outcome Candidate predictors Type of

regression

analysis

van Poppel,

2016, The

Netherlands [23]

Number of manifestations: 1 edition of the

half-marathon or marathon (Lage Landen

marathon, Eindhoven 2012, The Netherlands)

New running injuries Biomedical (n = 8): training characteristics

(amount and frequency of training, type of

running terrain, type of training); injury

status; demographics (age, gender, BMI)

Logistic

Total sample size: 614 runners (43.7±11.2y,

67.1% male, BMI 23.1±2.5) returned the

baseline and follow-up questionnaire: 464 ran

the half-marathon and 150 the marathon; 142

(23.1%) runners reported a total of 209 new

injuries.

Westrol, 2017,

USA [24]

Number of manifestations: 403 outdoor music

concerts or festivals in 11 genres: country,

hard rock/heavy metal, pop, electronic dance

music, hip-hop/rap, alternative rock, modern

rock, classic rock, adult contemporary,

classical/ symphony, variety/ other

PPR (per 1,000) Biomedical (n = 1): type of injury

(intoxication vs medical vs trauma)

Linear

Total sample size: 2,399,864 attendees—4,546

patients (PPR = 18.9/10,000; 1,697 transports

to hospital; TTHR = 7.1/10,000)

TTHR (per 1,000) Environmental (n = 4): crowd size;

weather conditions (heat index,

precipitation); type of the manifestation

Woodall, 2010,

Australia [25]

156 manifestations (sporting manifestations,

fetes/carnivals, spectator sports, concerts/

raves, ceremonial manifestations), 755 patient

presentations. Total number of participants is

not given.

Injury status Biomedical (n = 2): demographics (age,

gender)

Logistic

Environmental (n = 5): crowd size; time of

the manifestation (season, even duration);

type of the manifestation; alcohol presence

Prediction model development studies with internal validation

Arbon, 2018,

Australia [26]

Number of manifestations: 201 (see Arbon

2001), no information reported on the 15

included manifestations from 2015–2016.

PP (total) Environmental (n = 10): crowd size; venue

accommodation (mobile vs seated;

bounded vs unbounded; indoor vs

outdoor vs both; focused vs extended);

Non-linear

Total sample size: see Arbon 2001, no

information reported on the 15 included

manifestations from 2015–2016

TTH (total) weather conditions (humidity;

temperature); time of the manifestation

(night vs day vs both); type of the

manifestation; alcohol presence

Bowdish, 1992,

USA [27]

Number of manifestations: 7 editions of the

Indianapolis 500 Mile Race events (1983–

1989)

PP (total) Environmental (n = 6): crowd size;

weather conditions (humidity,

temperature, dew point, % sunshine, wind

speed)

Linear

Total sample size: not reported—105 patients

Studies that applied observations from few mass gatherings to an existing prediction model

Fitzgibbon, 2017,

USA [28]

Number of manifestations: 3 electronic dance

music festivals (Moonrise Festival, Mad

Decent Block Party, SweetLife Festival)

PP (total) Environmental (n = 8): crowd size; venue

accommodation (mobile vs seated,

bounded vs unbounded, indoor vs

outdoor); weather conditions (humidity;

temperature); time of the manifestation

(night vs day); type of the manifestation

N/A

Total sample size: 54,500 visitors—960 patient

contacts—56 patient transports

Nable, 2014,

USA [29]

Number of manifestations: 2 editions of the

Baltimore Grand Prix (2011–2012)

PP (total) Biomedical (n = 1): demographics (age) N/A

Total sample size: 261,000 spectators—216

patient encounters

TTH (total) Environmental (n = 9): crowd size; venue

accommodation (mobile vs seated,

bounded vs unbounded, indoor vs

outdoor); weather conditions (humidity;

temperature); time of the manifestation

(night vs day); type of the manifestation;

alcohol presence

(Continued)
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demographic information (in 1 model), level of competition (in 2 models). Six studies reported

the full equation of the multivariable model to predict PPR [15, 19, 22, 24, 26, 27].

Fig 2 summarizes the environmental and biomedical predictors for patient presentation

rate derived from multivariable regression models.

Weather conditions were found to be a significant factor to predict patient presentation

(rate): humidity [15, 26], temperature [21], heat index (i.e. a combination of air temperature

and relative humidity) [18, 24] and dew point [27] were positively associated with the number

or rate of patient presentation at first aid posts. In one of our included studies, temperature

(i.e. <23.5˚C vs�23.5˚C and<25.5˚C vs�25.5˚C) was included in a non-linear regression

tree model with a lower total number of patient presentations in case of higher temperatures

[26]. One study conducted in the USA found that the presence of air conditioning in a mixture

of indoor mass gatherings (sport spectator manifestations, concerts, public exhibitions) was

linked to a lower patient presentation rate [17]. In five studies, the following climatological

parameters were not statistical significantly associated with patient presentation (rate): humid-

ity, %sunshine and wind speed in 1 study [27], temperature in 2 studies [16, 27] and precipita-

tion in 3 studies [18, 21, 24].

The type of the mass gathering manifestations was a significant predictor in 7 multivariable

regression models. An Australian study of 201 mixed manifestations found that non-sporting

manifestations resulted in a higher PPR. Three studies focused on sports (spectator) manifesta-

tions and demonstrated that football games, but also specific outdoor music manifestations

(i.e. rock concerts) resulted in higher PPR compared to baseball games. One USA study inves-

tigating 6 automobile race weekends (NASCAR, Kansas Speedway, USA) found a higher PPR

during race days versus practice days. In one study that predicted PPR for a mixture of 79

mass gatherings, the type of manifestation (athletic manifestations versus football; concerts

versus football; public exhibitions versus football) was not a significant predictor [17].

Three studies, conducted on data from a mixture of mass gathering manifestations, found

crowd size to be positively associated with the total number of patient presentations [15, 26,

31] whereas attendance was not associated with PPR in one study [16].

Manifestations at which the audience was predominantly seated (i.e. typically large stadium

concerts) demonstrated a significantly lower presentation rate compared to manifestations

where spectators tended to be more mobile [15]. Outdoor manifestations have statistically sig-

nificant more medical presentations compared to indoor manifestations [15, 17]. A study with

a multivariable prediction model development, analysing all 32 soccer games that were played

in Japan at the FIFA World Cup 2002, concluded that higher venue capacity and easier venue

access were linked to a lower PPR. Conflicting evidence was found for bounded (i.e. a

Table 1. (Continued)

Author, year,

Country

Population—mass gathering manifestations Outcome Candidate predictors Type of

regression

analysis

Zeitz, 2005,

Australia [30]

Number of manifestations: Royal Adelaide

Show

PPR (per 1,000) Environmental (n = 9): crowd size; venue

accommodation (mobile vs seated,

bounded vs unbounded, indoor vs

outdoor); weather conditions (humidity;

temperature); time of the manifestation

(night vs day, day of the week); type of the

manifestation

N/A

Total sample size: 622,234 visitors—1,028

casualties

TTHR (per 1,000)

BMI: Body Mass Index; PP: Patient Presentation; PPR: Patient Presentation Rate; TTH: Transfers To Hospital; TTHR: Transfer To Hospital Rate; N/A: Not applicable.

https://doi.org/10.1371/journal.pone.0234977.t001
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manifestation contained within a boundary, often fenced) versus unbounded manifestations:

one Australian model (based on data of 201 mixed manifestations) showed that bounded man-

ifestations had a higher PPR [15] whereas one USA model (based on data of 79 mixed manifes-

tations) showed that the unbounded manifestations resulted in a higher PPR [17]. One

multivariate model to predict PPR at 405 music concerts in the USA showed that indoor versus

outdoor manifestations was not a statistically significant predictor [16].

Two Australian studies found that manifestations organised during both day and night

resulted in a higher PPR compared to manifestations organized during the day or night [15,

26]. One model to predict PPR at 403 music concerts found that day of the week was not a sta-

tistical significant predictor [24].

Free water availability (i.e. provided without cost to the patron) resulted in a lower PPR. In

this USA model, it was shown that the absence of free water led to a two-fold increase in the

PPR, even after controlling for other predictors such as weather conditions, percentage seating

and alcohol availability [17].

One study found that competitiveness was positively associated with PPR during half-mara-

thon running events, whereas the level of competition, expressed as the combination of the

number of caution periods, number of lead changes, and the interval between the winner and

second place, was not associated with PPR during auto race events.

Detailed information about the effect sizes of these multivariable predictors can be found in

S1 Table.

Fig 2. Biomedical and environmental variables from multivariable regression analyses predicting the Patient

Presentation Rate (PPR). The thickness of the box represents the number of multivariable models including the

following predictors: level of competition (n = 2); demographics (n = 1, age, gender); crowd size (n = 4);

accommodation (n = 4, mobile vs seated, bounded vs unbounded, outdoor vs indoor, type of venue access, maximum

venue capacity); weather conditions (n = 8, humidity, temperature, dew point, presence of air conditioning, %

sunshine, wind speed, precipitation); free water availability (n = 1); time of the event (n = 3; day vs night, day of the

week); type of the event (n = 8, music events, sport events).

https://doi.org/10.1371/journal.pone.0234977.g002
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Factors that predict transfer to hospital (rate)

Four multivariable regression models to predict transfer to hospital (rate) were developed. The

following predictor variables were included in these models: weather conditions (in 4 models),

crowd size (in 1 model), venue accommodation (in 2 models), time of the manifestation (in 1

model), type of the manifestation (in 4 models), number of patient presentations (in 1 model),

and type of the injury (in 1 model). Two studies reported the full equation of the multivariable

model to predict TTHR [15, 26].

The biomedical and environmental multivariable factors predicting the transfer to hospital

rate are depicted in Fig 3.

Humidity, temperature or the heat index (�32.2˚C) were positively associated to the TTHR

[15, 24, 26]. In one multivariable regression model developed with data from auto race events,

mean temperature, precipitation and type of the manifestation (practice day vs race day) were

not predictive for TTHR [21]. Music genres with a significant positive association with trans-

port rates were alternative rock and country, whereas no association was found for other

music genres, music festivals versus no music festivals [24]. Manifestation type was an impor-

tant predictor in the non-linear regression tree model of Arbon et al. since this predictor deter-

mined 2 decision nodes [26].

Venue accommodation was a significant predictor for transportation rates in 2 studies:

more transports were predicted in case the audience was seated or bounded (compared to

mobile or unbounded) [15]. A seated vs mobile audience was also included in the recent

Arbon regression tree model [26]. Crowd size and number of patients evaluated were posi-

tively associated with TTHR [15, 26]. Similar to the prediction of PPR, manifestations

Fig 3. Biomedical and environmental variables from multivariable regression analyses predicting The Transfer to

Hospital Rate (TTHR). The thickness of the box represents the number of multivariable models including the

following predictors: type of injury (n = 1, intoxication vs medical vs trauma); number of patients (n = 1);

accommodation (n = 2, mobile vs seated, bounded vs unbounded); weather conditions (n = 4, humidity, temperature,

precipitation); time of the event (n = 1, day vs night); type of the event (n = 4, music genres, sport events); crowd size

(n = 1).

https://doi.org/10.1371/journal.pone.0234977.g003
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organized during both day and night (compared to day or night only) were predictive for

TTHR [26]. Transport rates were highest with alcohol/drug intoxicated patients (p<0.001)

and lowest with traumatic injuries (p = 0.004). Detailed information about the effect sizes of

these predictors derived from multivariable models can be found in S2 Table.

Factors that predict the incidence of new sport injuries

Three multivariable regression models to predict the incidence of new sport injuries were

developed: 2 models with data of running manifestations [20, 23] and 1 model with data of a

mixture of sporting manifestations, fetes/carnivals, spectator sport manifestations, concerts/

raves, and ceremonial manifestations [25]. None of the included studies reported the full equa-

tion of the multivariable model to predict the incidence of new sport injuries. The following

predictor variables were included in these models: demographic information (in 3 models),

type of the manifestation (in 1 model), time of the manifestation (in 2 models), level of compe-

tition (in 2 models) and training characteristics (in 1 model). Fig 4 shows the environmental

and biomedical predictors for the incidence of new sport injuries derived from multivariable

regression models.

The following environmental factors remained statistically significant in a multivariable

model to predict new injuries: sporting manifestations and colder environmental conditions

(expressed by the year of the manifestation or by season (i.e. winter versus spring)) resulted in

a higher incidence of new injuries. Other types of manifestations (i.e. carnival, fete or rave con-

certs) or other seasons (i.e. summer vs spring; autumn versus spring) were not associated with

new injuries [25].

Significant biomedical factors to predict new injuries included demographics (age and gen-

der), level of competition and training characteristics. Older female runners during the 2

Oceans half-marathon in Cape Town (South Africa) had more incidence of medical complica-

tions (i.e. general or postural hypotension) compared to male runners and to younger female

runners [20]. However, in a model with data from a mixture of sporting and non-sporting

manifestations, the incidence of injuries was significantly higher in men [25]. During a (half-)

marathon running race, a lower level of competition (expressed by a slower running pace (>7

minutes per km) or <5 years of running experience) and the frequency of interval training

(i.e. sometimes versus always) were predictive for the incidence of new injuries. Two models

Fig 4. Biomedical and environmental variables from multivariable regression analyses predicting new injuries.

The thickness of the box represents the number of multivariable models including the following predictors: training

characteristics (n = 1, type of training, training frequency, type of terrain); level of competition (n = 2, running pace,

running experience); demographics (n = 3, age, gender, BMI); time of the event (n = 2, season); type of the event

(n = 1, sport events, carnival/fetes, music concerts).

https://doi.org/10.1371/journal.pone.0234977.g004
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to predict injuries during half marathon races found that specific information regarding

demographics (gender, BMI), level of competition (running experience, running pace cate-

gory) or training characteristics (training frequency, type of terrain) did not contribute to the

prediction of injury incidence. Detailed information about the effect sizes of these multivari-

able predictors can be found in S3 Table.

Predictive performance of the models

Four studies reported the R2 of their model to predict PPR or TTHR. The predictive perfor-

mance of the PPR models ranged from very low (R2 of 0.04 [16]) to (very) strong (R2 values of

0.64 [15] and 0.66 [19]). The predictive accuracy of the linear TTHR model by Arbon et al was

moderate (R2 = 0.34) [26]. The non-linear models of Arbon et al. accurately predicted PP and

TTH, as indicated by the low median error of 16 presentations per event and 1 transportation

per event, respectively.

Three studies externally applied prediction models for mass gatherings by comparing the

actual number of patient presentations or transports at 3 outdoor electronic dance music man-

ifestations in the USA [28], a US spectator sport manifestations (i.e. automobile race, Balti-

more Grand Prix) [29] and a city festival (i.e. Royal Air Show, Adelaide, Australia) [30]

with the predicted number by the model developed by Arbon et al. [15], by Hartman et al. [32]

and/or the retrospective (historical) analysis undertaken by Zeitz et al. [33]. The following pre-

dictor variables were included: weather conditions (in 3 models), crowd size (in 3 models),

type of the manifestation (in 3 models), time of the manifestation (in 3 models), venue accom-

modation (in 3 models), presence of alcohol (in 1 model), demographic information (in 1

model).

The actual number of patient presentations and transfers to hospital in two US studies

at urban auto-racing events and outdoor electronic dance music manifestations were under-

estimated by the Arbon/Hartman model (67–81% underestimation). The Arbon model

and the Zeitz review overpredicted the actual number of casualties during the Royal Air

Show in Adelaide (Australia) (22% and 10%, respectively). In this study, the actual number

of daily ambulance transfers was underpredicted by 43% (Arbon model) and 53% (Zeitz

review).

GRADE assessment

Although all included studies were observational, the initial certainty level was set at ‘high’

because the association between predictors and outcomes was irrespective of any causal con-

nection. The overall certainty level (for all outcomes: PPR, TTHR, injury status) was down-

graded with one level (from ‘high’ to ‘moderate’) due to risk of bias since overall risk of bias

was considered as ‘high’ in all studies (S3 and S4 Figs). Overall concerns for applicability were

present in 12 studies (75%), mainly because of the limited generalizability of the study partici-

pants (concerns for applicability in 9 studies (56%)) and the outcomes assessed (concerns for

applicability in 5 studies (31%)) (S5 and S6 Figs). Therefore, the certainty level was further

downgraded with one level due to indirectness (from ‘moderate’ to ‘low’). No reason was pres-

ent for upgrading or further downgrading the certainty level due to imprecise or inconsistent

results or publication bias.

Altogether, the final certainty in the effect estimates for the multivariable models predicting

PPR, TTHR or injury status was considered as ‘low’. This implies that our confidence in the

effect estimates is limited and that further research is very likely to have an important impact

on our confidence and is likely to change the estimate.
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Discussion

This systematic review included 16 studies that developed and/or externally applied a multi-

variable regression model to predict medical usage rates at mass gatherings. We identified a set

of biomedical (i.e. age, gender, level of competition, training characteristics and type of injury)

and environmental predictors (i.e. crowd size, accommodation, weather, free water availabil-

ity, time of the manifestation and type of the manifestation) for PPR, TTHR and injury status.

No evidence for psychosocial predictors was found. The overall certainty in the effect estimates

is low due to risk of bias of the studies and limited generalizability (indirectness). Evidence

from the studies that applied observations from few mass gatherings to another prediction

model indicated that medical usage rates are consistently over/underestimated. Therefore, the

development and validation of context-specific prediction models is recommended.

To the best of our knowledge, this is the first review that systematically screened, analyzed

and critically appraised studies that developed and/or validated a statistical model to predict

medical usage rates at mass gatherings. Until today, numerous descriptive papers and narrative

reviews on this topic have been published. For example, Nieto and Ramos found 96 articles,

published between 2000 and 2015 in the Scopus database, on the type of manifestations (main

type of manifestations: sports (46%), music (25%) or religious/social content (23%)) and topics

covered in the mass gathering literature (main topics: health care, PPRs and/or TTHRs, respi-

ratory pathogens, surveillance and the global spread of diseases) [34]. Moore et al. concluded

that the most important predictive factors to influence medical usage rates at large manifesta-

tions were the weather, alcohol and drug use and type of manifestation [35]. Baird et al.

searched 4 biomedical databases and retained 8 studies suggesting a positive relationship

between temperature/humidity and PPR [36]. Our review serves as a quantitative basis to pre-

dict medical usage rates at mass gatherings by identifying those variables that were included in

multivariable prediction models.

The major strength of our systematic review is the use of a rigorous methodology including

sensitive search strategies in six databases, comprehensive selection criteria (no restriction to

population (types of mass gatherings) or outcomes (medical usage rates)) resulting in scientific

evidence, judged and critically appraised by two reviewers independently. We restricted our

selection of included studies to multivariable regression models and excluded studies that only

used univariate regression analyses. Advantages of multivariable analysis include the ability to

represent a more realistic picture than looking at a single variable. Indeed, apparent univariate

associations may in reality be explained or confounded by a non-measured predictor variable.

The risk of overlooking confounding or real predictor variables decreases by including more

potential predictor variables in the model. Further, multivariable techniques can control asso-

ciation between variables by using cross tabulation, partial correlation and multiple regres-

sions, and introduce other variables to determine the links between the independent and

dependent variables or to specify the conditions under which the association takes place. This

provides a more powerful test of significance compared to univariate techniques [37].

Although some scientists have questioned the concept of statistical significance [38, 39], the

statistically significant predictors from these multivariable regression models apply as the best

available scientific basis for which predictors are associated with increased medical usage rates.

There are three limitations concerning the critical appraisal of the included studies design,

the lack of standardized data collection and analysis, and the limited generalizability of the

results. Firstly, we critically appraised the included studies by using the PROBAST checklist

items [10] and the GRADE approach for the case where no single estimate of effect is present

[13]. Since the GRADE working group has not yet provided specific recommendations on

how to rate the certainty of effect estimates of prediction modelling studies, future formal
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guidance is needed. Secondly, the methodology of data collection (both predictors and medical

usage rates) and statistical analysis (i.e. different types of logistic, linear and non-linear regres-

sion analysis) varied substantially among the included studies. Hence, we were not able to con-

duct a meta-analysis. Although there is agreement on some broad concepts underlying mass-

gathering health amongst an international group of mass gathering experts [40], more future

scientific effort is needed to standardize data collection and statistical analysis when develop-

ing and/or validating a prediction model. Thirdly, most of the included prediction models

were developed or validated in the USA or Australia. Since the interaction between the differ-

ent biomedical, environmental, psychosocial factors and medical usage rates is complex, no

extrapolation of these models to other contexts (e.g. other countries/continents, other type of

manifestations, etc) can be performed. For example, climatological differences (temperature,

humidity, precipitation, cloudiness, brightness, visibility, wind, and atmospheric pressure), the

mixture of type of manifestations included in the prediction models (i.e. sport (spectator)

manifestations, indoor/outdoor music concerts, carnivals, public exhibitions, etc.), but also

difference in public health systems across countries (leading to different emergency care ser-

vices delivery policies) hinders extrapolation. This limited generalizability was also confirmed

by the 3 studies that applied observations from few mass gatherings to the prediction models

of Arbon or Zeitz, showing significant under/overestimation of the medical usage rates when

using an existing prediction model [28–30]. Future development of prediction models should

therefore be validated both internally and externally, preferably against big data sets of various

types of mass gatherings.

This systematic review scientifically underpinned Arbon’s conceptual model with a list of

statistically significant biomedical (i.e. age, gender, level of competition, training characteris-

tics and type of injury) and environmental predictors (i.e. crowd size, accommodation,

weather, free water availability, time of the manifestations and type of the manifestations) for

PPR, TTHR and injury status. The R2 (i.e. a statistical measure that represents the proportion

of variance for medical usage rates that is explained by the biomedical/environmental predic-

tors) of the multivariable regression models ranged from 4% to 66%. This implies that a (large)

part (34–96%) of the variation in medical usage rates is as yet unexplained and dependent on

unidentified factors. An important potential predictor (which is difficult to measure quantita-

tively) might be the characteristics of the first aid delivery services such as the amount and size

of first aid posts (i.e. more posts will result in increased medical usage rates and smaller posts

might result in a higher transfer to hospital rate) and the level of mobility of the first aid pro-

viders (i.e. more mobile teams will generate higher medical usage rates).

The current list of predictors are of clinical relevance for first aid or emergency services,

experts and researchers involved in mass gathering. These predictors should be consistently

measured in a standardized way to develop and/or validate future prediction models, in order

to allow more cost-effective pre-event planning and resource provision. Another remaining

question that needs to be answered in future research is how PPR and TTHR evolve over the

time span of the mass gathering, in order to generate the most efficient use of (first aid) mate-

rial and people (nurses, first aid providers, doctors, etc.). Since planning and preparing public

health systems and services for managing a mass gathering is a complex procedure and

requires a multidisciplinary approach, interdisciplinary research and international collabora-

tion is of paramount importance to execute this future research agenda successfully [41].

Conclusion

This systematic review identified multivariable models that predict medical usage rates at mass

gatherings. Different biomedical (i.e. age, gender, level of competition, training characteristics
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and type of injury) and environmental (i.e. crowd size, accommodation, weather, free water

availability, time and type of the manifestation) predictors were associated with medical usage

rates. Since the overall quality of the evidence is considered as low and no generic predictive

model is available to date, proper development and validation of a context-specific model is

recommended. Future international initiatives to standardize the collection and analysis of

mass gathering health data are needed to enable the opportunity to conduct meta-analyses, to

compare models across societies and modelling of various scenarios to inform health services.

This will finally result in more cost-effective pre-hospital care at mass gatherings.
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